ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Masaaki Uchida, Michio Ichikawa
Nuclear Technology | Volume 51 | Number 1 | November 1980 | Pages 33-44
Technical Paper | Fuel | doi.org/10.13182/NT80-A32554
Articles are hosted by Taylor and Francis Online.
Three Zircaloy-clad UO2 test fuel rods were irradiated at 50 kW/m to a burnup of 15 000 MWd/MTU with an in-pile rod diameter scanning device, and cladding deformations were measured at various power and bumup levels. Major mode of deformation was ridging at pellet interface positions. Magnitude and relevant power levels for various modes of cladding deformation were found to be strongly dependent on initial pellet-cladding gap size. During the first approach to power, smaller gap size caused larger cladding deformation; however, the effect was reversed at higher burnup. Cladding diametral deformation was found to be dictated not only by local thermal expansion of a single pellet, but also by long-range axial force in the pellet stack. In the first power cycle, cladding deformations caused by power ramp were found to decrease during subsequent power holding, but their rate was much reduced at high burnup.