ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. Kelm, B. Oser, S. Drobnik, W. D. Deckwer
Nuclear Technology | Volume 51 | Number 1 | November 1980 | Pages 27-32
Technical Paper | Chemical Processing | doi.org/10.13182/NT80-A32553
Articles are hosted by Taylor and Francis Online.
For the destruction of nitric acid in radioactive waste solutions from the reprocessing of nuclear fuel, a batch process has been developed using formic acid as a reducing agent. The main reaction products are N2O and CO2, which can be discharged into the environment. The process has been tested on a lab scale with simulated and real waste solutions as well as on a pilot scale with simulated solutions. Nitric acid turnovers between 80 and 90% are obtained. The final nitrate concentrations in high- and medium-level waste solutions are below 0.5 and 0.2 mol.ℓ−1, respectively. The induction period that occurs when starting the reaction can be described by a reaction rate equation. For our special conditions it lies within the range of a few seconds. The loss of solid particles and formic acid into the off-gas during the whole process amounts to a few parts per million. Corrosion tests under realistic conditions have shown that Incoloy 825 is an appropriate material for the denitration vessel.