ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Bullough, M. H. Wood
Nuclear Technology | Volume 50 | Number 2 | September 1980 | Pages 164-168
Technical Paper | Material | doi.org/10.13182/NT80-A32542
Articles are hosted by Taylor and Francis Online.
Several recent papers have investigated the effect of ignoring bulk recombination in derivations of the sink strengths required for the rate theory of void swelling, irradiation creep, and growth. Although most of this work has concluded that bulk recombination can safely be neglected in such procedures, some uncertainty remains. Numerical calculations to eliminate this uncertainty have been made that compare explicit spatial grid and continuum representations of a thin foil, and are performed for irradiation growth in zirconium. It is found that the growth strain predicted using the continuum foil sink strength, derived without bulk recombination, is always within ∼20% of the spatial result and is usually in much closer agreement.