ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Tay-Jian Liu
Nuclear Technology | Volume 137 | Number 1 | January 2002 | Pages 10-27
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3254
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic phenomena and recovery actions of loss-of-feedwater (LOFW) incidents in a pressurized water reactor were investigated experimentally at the Institute of Nuclear Energy Research Integral System Test (IIST) facility. To understand whether the physical phenomena observed in the full-height and full-pressure facility during an LOFW transient can be simulated in the reduced-height and reduced-pressure IIST facility, two counterpart tests based on the same scenarios as those of the BETHSY tests were performed. These two tests performed in BETHSY differ mainly at the initiation of the bleed-and-feed process on the primary side in order to examine the effectiveness of recovery measures on the processes of the pressurizer power-operated relief valves early and late opening. The initial and boundary conditions of the current tests were determined by scaling down the corresponding conditions of the LOFW experiments performed at BETHSY. In view of the inherent differences in design, scaling approach, and facility operation conditions in the systems, the consistency between the counterpart tests is examined by identifying key thermal-hydraulic phenomena and clarifying their differences. The results of the IIST and BETHSY tests showed the common thermal-hydraulic behaviors of key parameters, such as system pressure, void fraction in the hot leg, primary coolant inventory, pressurizer level, and discharged mass evolutions. The chronological events studied in the IIST facility are generally consistent with those studied in BETHSY. The results from the IIST facility may not be exact replications of the BETHSY response; however, the physics involved in bleed-and-feed are well measured and modeled.