ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
R. Farhadieh, W. H. Gunther
Nuclear Technology | Volume 50 | Number 3 | October 1980 | Pages 298-306
Technical Paper | Material | doi.org/10.13182/NT80-A32532
Articles are hosted by Taylor and Francis Online.
An experimental study of the downward penetration of molten UO2 into substrate limestone concrete was conducted. Joule heating was used to melt the UO2. The technique allowed for sustaining of the molten phase for a long time period. The released gases from concrete eliminated the sintering of UO2 and caused the formation of single large interior cavity in the UO2/concrete solidified mixture. Uplifting of the top surface of the mixture and the formation of a mountain-like protrusion, bearing a vent hole on its apex, resulted from significant internal pressure. Except for the bottom surface of the solidified mixture, which was continuous and glassy-like, all the other surfaces were porous. Analyses of selected samples revealed the presence of calcium uranate type compounds. Concrete constituents were well distributed throughout UO2. Magnesium did not participate in compound formation with UO2. Finally, dissolution of the concrete constituents in UO2 resulted in reduction of the internal-heat generation.