ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. Farhadieh, W. H. Gunther
Nuclear Technology | Volume 50 | Number 3 | October 1980 | Pages 298-306
Technical Paper | Material | doi.org/10.13182/NT80-A32532
Articles are hosted by Taylor and Francis Online.
An experimental study of the downward penetration of molten UO2 into substrate limestone concrete was conducted. Joule heating was used to melt the UO2. The technique allowed for sustaining of the molten phase for a long time period. The released gases from concrete eliminated the sintering of UO2 and caused the formation of single large interior cavity in the UO2/concrete solidified mixture. Uplifting of the top surface of the mixture and the formation of a mountain-like protrusion, bearing a vent hole on its apex, resulted from significant internal pressure. Except for the bottom surface of the solidified mixture, which was continuous and glassy-like, all the other surfaces were porous. Analyses of selected samples revealed the presence of calcium uranate type compounds. Concrete constituents were well distributed throughout UO2. Magnesium did not participate in compound formation with UO2. Finally, dissolution of the concrete constituents in UO2 resulted in reduction of the internal-heat generation.