ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Richard Simms, Robert K. LO, William F. Murphy, Alan B. Rothman, George S. Stanford
Nuclear Technology | Volume 50 | Number 3 | October 1980 | Pages 225-241
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A32526
Articles are hosted by Taylor and Francis Online.
In a transient overpower (TOP) accident, the fuel element failure threshold is a function of the rate of reactivity increase and the fuel microstructure. Test E8 simulated a hypothetical $3/s TOP accident in a liquid-metal fast breeder reactor using seven (Pu,U)O2 fuel elements of the fast test reactor (FTR) type. The test elements were pre-irradiated at 30 kW/m in the Experimental Breeder Reactor II to 5 at.% burnup, leading to a low-to-moderate power micro structure typical of FTR fuel Data from test vehicle sensors, hodoscope, and post-test examinations were used to deduce the sequence of events occurring within the test zone. The initial fuel failure event occurred abruptly at ∼29 times the nominal power level at an estimated average enthalpy of ∼925 kJ/kg relative to 20°C, with 50% of the fuel cross-sectional area above the solidus at the suspected failure site. After the initial failure, ∼2% of the fuel was ejected above the top of the active fuel region. Sodium voiding occurred rapidly. An upper blockage was formed that apparently prevented further fuel dispersal. Inherent test vehicle limitations, loss of flow tube geometry, and nontypical power generation after fuel element failure may have caused a departure from the fuel motion predicted for the FTR conditions. No violent fuel-coolant interactions were observed in the test.