ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
David F. Williams, Guillermo D. Del Cul, Louis M. Toth, Emory D. Collins
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 367-370
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT01-A3252
Articles are hosted by Taylor and Francis Online.
It has been proposed that GaCl3 can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl3 is quite volatile (boiling point: 201°C), the behavior of GaCl3 dissolved in chloride salts is quite different because of solution effects and is critically dependent upon the composition of the solvent salt (i.e., its Lewis acid/base character). In this technical note, the behavior of gallium in prototypical Lewis acid and Lewis base salts is contrasted. It is found that gallium volatility is suppressed in basic melts and promoted in acidic melts. These results have an important influence on the potential for simple gallium removal in molten salt systems.