ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
T. V. Krishnan
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 159-164
Technical Paper | Nuclear Power Reactor Safety / Instrument | doi.org/10.13182/NT80-A32517
Articles are hosted by Taylor and Francis Online.
Intensities observed from any sample can be reduced to any desired matrix by using interference free off-peak background as an internal standard. The normalized count IN is given by (Ip/IB) X B’, where Ip and IB are observed peak and background counts and B’, the normalization factor, is the background in the desired matrix. After blank corrections, the relation between the concentration and the intensity is IN = kC (for low concentrations), log IN = a log C (for intermediate concentrations), and log IN = a log C -b(log C)2 (for high concentrations), except when B’ is too small or too large. Adjustment of B’ is equivalent to altering experimental conditions. The second-degree curve can also be linearized by plotting log IN = log IN + b(log C)2 versus log C, or (log IN/ log C) versus log C. Analysis can be done by evaluating a and b from two standards and solving for log C. Transformation of this second-degree equation to the Siedel-Lomakin type of curve, the use of x-ray fluorescence as an absolute method of analysis without standards, with only the unknown sample and two dilutions, and the modification of influence coefficient method of Rasberry and Heinrich to a binary form consisting of only the element of interest and the matrix, all showed that such a unified approach enables analysis of all types of samples with standards in any available matrix.