ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
J. M. Beeston, R. R. Hobbins, G. W. Gibson, W. C. Francis*
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 136-149
Technical Paper | Nuclear Power Reactor Safety / Fuel | doi.org/10.13182/NT80-A32515
Articles are hosted by Taylor and Francis Online.
Uranium aluminide powder production, fuel plate fabrication development, and irradiation performance of more than 1700 fuel elements during 10 yr of operational service at Idaho National Engineering Laboratory are discussed. The UAlx dispersion fuel system has performed well in extended service in the high flux test reactors. The anticipated benefits of the powder dispersion form—accommodation of fission products in deliberate voidage, structural tolerance of fission gas, and dispersion of burnable poisons—have been realized. The operating limit for the Advanced Test Reactor fuel elements is presently set at 2.3 × 1021 fiss/cm3 of core—a burnup of >500 000 MWd/MTU. The growth or swelling of uranium aluminide fuel plates at up to 2.4 × 1021 fiss/cm3 is proportional to the fission density, but the proportionality constant depends on the temperature, core porosity, and fuel loading with 93% enriched uranium. For a fuel loading of 4.3 × 1021 U atoms /cm3, the growth corresponds to 0.11% per % burnup. The blister test as a criterion for impending fuel plate failure due to swelling appears adequate, and the blister temperature at fission densities of 2.7 × 1021 fiss/cm3 of core is ∼720 K.