ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. M. Beeston, R. R. Hobbins, G. W. Gibson, W. C. Francis*
Nuclear Technology | Volume 49 | Number 1 | June 1980 | Pages 136-149
Technical Paper | Nuclear Power Reactor Safety / Fuel | doi.org/10.13182/NT80-A32515
Articles are hosted by Taylor and Francis Online.
Uranium aluminide powder production, fuel plate fabrication development, and irradiation performance of more than 1700 fuel elements during 10 yr of operational service at Idaho National Engineering Laboratory are discussed. The UAlx dispersion fuel system has performed well in extended service in the high flux test reactors. The anticipated benefits of the powder dispersion form—accommodation of fission products in deliberate voidage, structural tolerance of fission gas, and dispersion of burnable poisons—have been realized. The operating limit for the Advanced Test Reactor fuel elements is presently set at 2.3 × 1021 fiss/cm3 of core—a burnup of >500 000 MWd/MTU. The growth or swelling of uranium aluminide fuel plates at up to 2.4 × 1021 fiss/cm3 is proportional to the fission density, but the proportionality constant depends on the temperature, core porosity, and fuel loading with 93% enriched uranium. For a fuel loading of 4.3 × 1021 U atoms /cm3, the growth corresponds to 0.11% per % burnup. The blister test as a criterion for impending fuel plate failure due to swelling appears adequate, and the blister temperature at fission densities of 2.7 × 1021 fiss/cm3 of core is ∼720 K.