ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
TVA files for Clinch River SMR construction permit
The Tennessee Valley Authority announced yesterday that it has submitted a construction permit application to the Nuclear Regulatory Commission for the construction of a GE Vernova Hitachi Nuclear Energy BWRX-300 small modular reactor at the Clinch River nuclear site in Oak Ridge, Tenn.
Toshiaki Matsuo, Takuma Yoshida
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 354-366
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-A3251
Articles are hosted by Taylor and Francis Online.
This study, which develops a safety assessment code for radioactive waste disposal, consists of two-dimensional analyses of underground water infiltrated flow and near-field radionuclide migration, one-dimensional analyses of far-field migration, and the dose equivalent. The study takes into account the influence of a finite absorption amount of radionuclides in an engineered barrier system (EBS).The safety assessment code is applied to 14C migration calculations. The near-field cylindrical model consists of an equally mixed region of wasteforms and backfill, bentonite, and rock. Carbon-14 coexists with 3.1 × 106 times as much 12C in the wasteforms. The distribution coefficient, maximum absorption amount, and solubility of CO32- against the equally mixed region are assumed to be 2.0 m3/kg, 3.06 mol/kg, and 544 mol/m3, respectively. Then, the release rate from the wasteforms (10-4 to 10-6/yr) and underground water detachment period from the wasteforms are examined to lower the dose equivalent by the intake of well water.The 14C concentration on the EBS boundary is 20 times as large in the case of EBS finite absorption as in the case of infinite absorption. So, the EBS finite absorption leads to absorption saturation and accelerated release of the radionuclides. The influence of the absorption saturation could not be prevented by lowering the release rate. A 3 × 104/yr detachment lowered the dose equivalent to 1/40 of the original case.