ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Robert P. Schuman
Nuclear Technology | Volume 49 | Number 2 | July 1980 | Pages 223-232
Nuclear Fuel Cycle | Fuel Cycle | doi.org/10.13182/NT80-A32485
Articles are hosted by Taylor and Francis Online.
There has been considerable controversy concerning the alpha waste and the proliferation hazards of breeder reactors and chemical reprocessing. In order to compare the hazards of different fuel cycles, calculations of alpha waste production and fuel composition have been made for 235U-burning light water reactors (LWRs) and Canadian Deuterium Uranium (CANDU) natural uranium, heavy water reactors using the throw-away fuel cycle, for LWRs with plutonium and uranium recycle, for liquid-metal fast breeder reactors (LMFBRs) using the 238U-239Pu and the 232Th-233U fuel cycles, for LMFBR converters with the 232Th-239Pu fuel cycle, for thermal CANDU breeders and light water breeder reactors using the 232Th-233U fuel cycle, including a 20% denatured CANDU breeder, and for a one-cycle thermal 232Th-239Pu converter. The LWR or CANDU using the throw-away fuel cycle produces the most alpha waste, but the alpha waste, which is due mainly to plutonium, can be greatly reduced by recycling plutonium and uranium. The LMFBR produces still less alpha waste, and, in conjunction with LWRs or CANDUs, minimizes the total inventory of plutonium. Especially if a proliferation-resistant reprocessing scheme is used, the mixed LMFBR/LWR or CANDU economy will greatly reduce the proliferation hazard relative to the throwaway fuel cycle. Recycle of actinide waste in LMFBRs will nearly eliminate the alpha activity of the waste, but will complicate fuel fabrication.