ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
L. C. Walters, J. H. Kittel
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 273-280
Technical Paper | Fuel | doi.org/10.13182/NT80-A32473
Articles are hosted by Taylor and Francis Online.
The reduction in projected sodium outlet temperatures for commercial liquid-metal fast breeder reactors has renewed the interest in metal fuels. The U-Pu-Zr or Th-Pu-U-Zr metal fuel pins, sodium bonded to stainless-steel claddings, will yield high burnup along with adequate fuel-cladding compatibility. High burnup capability is assured by designing the fuel element so that interconnected porosity and flssion-gas release occur prior to fuel-cladding contact. Interconnected porosity and fission-gas release take place at about 30% fuel-volume swelling, independent of the metal fuel composition. The U-Fs/Type 316 stainless-steel-clad driver-fuel element used in the Argonne National Laboratory Experimental Breeder Reactor II is designed to take advantage of the phenomenon of interconnected porosity, and burnups in excess of 10 at.% are typically achieved prior to cladding breach. The adequate fuel-cladding compatibility, high burnup potential, superior breeding performance, and demonstrated remote refabrication have made metal fuels an attractive alternative for fast reactor design.