ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
L. C. Walters, J. H. Kittel
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 273-280
Technical Paper | Fuel | doi.org/10.13182/NT80-A32473
Articles are hosted by Taylor and Francis Online.
The reduction in projected sodium outlet temperatures for commercial liquid-metal fast breeder reactors has renewed the interest in metal fuels. The U-Pu-Zr or Th-Pu-U-Zr metal fuel pins, sodium bonded to stainless-steel claddings, will yield high burnup along with adequate fuel-cladding compatibility. High burnup capability is assured by designing the fuel element so that interconnected porosity and flssion-gas release occur prior to fuel-cladding contact. Interconnected porosity and fission-gas release take place at about 30% fuel-volume swelling, independent of the metal fuel composition. The U-Fs/Type 316 stainless-steel-clad driver-fuel element used in the Argonne National Laboratory Experimental Breeder Reactor II is designed to take advantage of the phenomenon of interconnected porosity, and burnups in excess of 10 at.% are typically achieved prior to cladding breach. The adequate fuel-cladding compatibility, high burnup potential, superior breeding performance, and demonstrated remote refabrication have made metal fuels an attractive alternative for fast reactor design.