ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Paul Sasa, August W. Cronenberg+, Michael G. Stevenson
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 233-250
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A32470
Articles are hosted by Taylor and Francis Online.
One aspect of nuclear reactor safety assessment is a prediction of fuel behavior associated with postulated overheating events, which includes an assessment of the role of fission product inventory, contained within irradiated fuel elements, on fuel relocation potential. In general, the gaseous fission products, such as xenon and krypton, have been considered the most likely candidates for fuel relocation. However, the fissioning of UO2 fuel in both a fast and slow neutron spectrum also results in the generation of a significant quantity of such metallic fission products as barium, palladium, molybdenum, and other metal species. Metallurgical analysis of irradiated fuel indicates that such metals aggregate into inclusions found throughout the fuel matrix. During normal reactor operation, such metallic inclusions are in a solid state, but at the elevated temperatures expected for overheating accident transients, such inclusions may tend to volatilize, contributing to fuel motion. This paper involves an assessment of effect of such metallic fission product inclusions on fuel motion potential for accident analysis and is the first known attempt at such an assessment. To assess this potential, two limiting calculational assessments were made. Results indicate that if the inclusion constituents are assumed to be segregated elementally, then the presence of the highly volatile species such as antimony, palladium, and iron can result in an estimated 30% expansion just prior to fuel vaporization. However, under the more probable assumption of complete miscibility of constituents, the effect of metallic inclusion vaporization would be of little consequence to fuel motion.