ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. C. McGuire, W. F. Brehm
Nuclear Technology | Volume 48 | Number 2 | April 1980 | Pages 101-109
Technical Paper | Reactor | doi.org/10.13182/NT80-A32456
Articles are hosted by Taylor and Francis Online.
Prototype radionuclide traps were tested in sodium loops containing irradiated sources (Source Term Control Loops 2 and 3) at 604 and 538°C (1120 and 1000°F). Prototype traps were 70 to 87% efficient in removing 54Mn from the sodium, and also effective for 60Co. Extensive screening tests showed that pure nickel is the most effective getter material, working best above 450°C (842°F) with increasing effectiveness at higher temperatures. Of the several possible trap sites considered for reactor use, a location within the top of the fuel assembly was chosen as the most convenient and effective. This position would facilitate trap handling by making trap insertion and removal an implicit part of the normal fuel handling procedure. A cost/benefit analysis shows that the radionuclide trap will be economically attractive. One radionuclide trap has completed a year of testing in an Experimental Breeder Reactor II driver fuel subassembly with good results, and a second trap is being tested in the same reactor.