ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Bernard L. Cohen
Nuclear Technology | Volume 48 | Number 1 | April 1980 | Pages 63-69
Technical Paper | Radioactive Waste | doi.org/10.13182/NT80-A32448
Articles are hosted by Taylor and Francis Online.
The several water intrusion scenario studies in the recent literature are all quite similar and may be easily understood if used to estimate the total number of eventual cancers per unit of energy generated, including their sensitivity to input parameters. However, these studies are grossly overpessimistic in several aspects of the problem, especially in using leach rate data from highly unrealistic experimental situations, and in ignoring geochemical considerations in both leaching and in transport. It is concluded that it is reasonable to expect removal and transport for an atom of buried waste to be similar to that for an atom of average rock. Under that assumption, the leach rate can be estimated from the chemical compositions of rock and of groundwater, coupled with the water flow through aquifers. The result (excluding 238U) is 0.0008 eventual cancer/GW(electric)-yr. This treatment would be invalidated if the waste were released through fractures in the rock induced by the emplacement operations or by heat. If such fractures cannot be discounted, total reliance must be on leach resistance.