ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Trinity Test at 80: American Nuclear Society CEO Craig Piercy reflects on the Manhattan Project
By Craig H. Piercy, CEO and Executive Director of the American Nuclear Society
Eighty years ago today, at exactly 5:29:45 a.m. local time* on July 16, 1945, the United States Army detonated the world’s first nuclear bomb in the Jornada del Muerto desert of southern New Mexico. The searing flash and thunderous shockwave marked the culmination of the Manhattan Project, a secret, three-year national effort to harness nuclear fission and hasten the end of the Second World War.
The Trinity test, overseen by Manhattan Project director Major General Leslie Groves and Los Alamos Laboratory director Dr. J. Robert Oppenheimer, was the final act of that race to build the atomic bomb. Hoisted atop a 100-foot steel tower, the plutonium implosion device, known as the Gadget, unleashed a blast equal to 21,000 tons of TNT and temperatures hotter than the center of the Sun.
From ten miles away, observers wearing darkened welder goggles, looked on in stunned silence. “We knew the world would not be the same,” recalled Oppenheimer.
P. Silvennoinen, T. Vieno, J. Vira
Nuclear Technology | Volume 48 | Number 1 | April 1980 | Pages 34-42
Technical Paper | Fuel Cycle | doi.org/10.13182/NT80-A32445
Articles are hosted by Taylor and Francis Online.
A technique has been devised to combine multiple criteria in fuel cycle optimization. Besides the conventional economic optimum, the model comprises the objectives of minimizing the economic risk as well as the proliferation hazard in the light water reactor (LWR) fuel cycle. Based on a material flow model, objective functions are formulated in a form amenable to linear programming. The scheme commences with a single-criterion stage, where the three solutions and suboptimal strategies obtained span the domain of feasible multigoal solutions. The multigoal optimum is searched by means of fuzzy optimization techniques that are eventually reduced again to linear programming. The method is applied to a reference nuclear power program. In this case, the economic optimum is found to motivate plutonium recycle in the LWR. The sole minimization of the proliferation risk corresponds to recycling the uranium only. Reprocessing and plutonium utilization should take place in a more resistant system. Minimization of economic risks would in this case lead to the once-through cycle. The combination of all the three criteria in the multigoal optimum is achieved by a recycle strategy where the recycle loadings are batched and scheduled to take place in a discontinuous manner. A substantial reduction of the proliferation risk can be claimed at an economic penalty that would be on the order of 10 to 15% of the fuel cycle costs.