ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
TVA files for Clinch River SMR construction permit
The Tennessee Valley Authority announced yesterday that it has submitted a construction permit application to the Nuclear Regulatory Commission for the construction of a GE Vernova Hitachi Nuclear Energy BWRX-300 small modular reactor at the Clinch River nuclear site in Oak Ridge, Tenn.
Eric P. Loewen, Rodrick D. Wilson, Judith K. Hohorst, Arvind S. Kumar
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 261-277
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3244
Articles are hosted by Taylor and Francis Online.
Recent investigations into the performance and economics of mixed thoria-urania (ThO2/UO2) fuel cycles in light water reactors indicate that there may be advantages to using these fuels at high burnups. The Idaho National Engineering and Environmental Laboratory (INEEL) modified FRAPCON-3, a U.S. Nuclear Regulatory Commission-sponsored software package developed by Pacific Northwest National Laboratory for use on mixed thoria-urania fuels. The modifications constituted the first stage of fuel performance evaluations supported by the Nuclear Energy Research Initiative (NERI) project titled Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors. The goal of this NERI project is to develop mixed ThO2/UO2 fuels that can be operated to a relatively high burnup level in current and future commercial power reactors.This paper describes in detail the INEEL's modifications to the FRAPCON-3 thermal conductivity subroutine FTHCON and the techniques used to validate the modifications. The paper presents the general fuel design criteria used to model mixed thoria-urania fuel and a steady-state analysis of a mock thoria-urania fuel using the FRAPCON-3Th code. The paper also presents the data analyses for the mock thoria-urania fuel and offers suggestions for future upgrades and improvements to the code.