ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. J. Allen, S. R. McNeany
Nuclear Technology | Volume 47 | Number 2 | February 1980 | Pages 363-377
Technical Paper | Analysis | doi.org/10.13182/NT80-A32439
Articles are hosted by Taylor and Francis Online.
Assay and analysis procedures were developed for nondestructive fissile isotopic measurement of mixed 233U-235U fuel samples. For 233U, the number of delayed neutrons released per fission is about half that for 235U, although the number of prompt neutrons is approximately the same. By separately counting prompt and delayed neutrons released by a sample exposed to neutron irradiation, the amounts of 233U and 235U present in the sample can be determined. Equations of delayed and prompt neutron counts versus 233U and 235U contents are solved simultaneously for the 233U and 235U contents of a sample. Eleven samples containing mixtures of 233U and 235U from no 233U to nearly 100% were prepared and assayed in prompt and delayed neutron assay devices. Constants for calibration equations were fitted to data from nine of the samples. The maximum differences between counts calculated by the calibration equations and measured counts were 2.3% for delayed neutrons and 1.2% for prompt neutrons, indicating a good selection of the form for the calibration equations. The two remaining samples were treated as unknown, and the uranium contents of these samples were determined by simultaneously solving the two calibration equations. The maximum difference between measured 233U or 235U content and actual content for either sample was 1.5%.