ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
R. D. Gasser, W. T. Pratt
Nuclear Technology | Volume 47 | Number 2 | February 1980 | Pages 282-307
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A32433
Articles are hosted by Taylor and Francis Online.
An assessment is made of the containment margin available in the Fast Flux Test Facility to mitigate the consequences of a postulated failure of in-vessel post-accident heat removal following a hypothetical core disruptive accident. The consequences of a number of assumed meltdown configurations (both in-vessel and ex-vessel) are assessed using the CACECO (CAvity, CEll, COntainment) containment analysis computer code together with currently available melt front penetration models. The sensitivity of the accident scenarios to a number of crucial assumptions is established by scoping studies. It is concluded from both the in-vessel and ex-vessel analyses that sodium vapor combustion is a major source of reactor containment building (RCB) pressurization. The conditions (a combination of sodiumconcrete reaction, pool size, and decay heat level) that most rapidly bring the sodium to boiling, together with those that enhance mass transfer of sodium vapor to the RCB, are the ones that most significantly affect the pressure response.