ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Albert Kreuser, Jörg Peschke
Nuclear Technology | Volume 136 | Number 3 | December 2001 | Pages 255-260
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3243
Articles are hosted by Taylor and Francis Online.
The quantification of common-cause failures (CCFs) is often connected with uncertainties in how to interpret observed CCF events and with how far they are applicable to the specific group of components in question. A method has been developed that allows consideration of these kinds of uncertainties on the basis of a modification of the Binomial-Failure-Rate model. The quantification of interpretation uncertainties by means of interpretation alternatives is discussed as well as their effects on the estimation of the coupling parameter of the underlying CCF model. The estimation of the coupling parameter under consideration of the aforementioned uncertainties is performed by a Bayesian approach. To facilitate the specification of interpretation uncertainties, a default proposal of the interpretation vector is automatically generated on the basis of component fault states gained by expert judgment. Modification of the default vector is possible depending on engineering judgment of technical or operational differences between the observed and the target group of components.