ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Nobuo Sasamoto, Kiyoshi Takeuchi
Nuclear Technology | Volume 47 | Number 1 | January 1980 | Pages 189-199
Technical Paper | Shielding | doi.org/10.13182/NT80-A32422
Articles are hosted by Taylor and Francis Online.
An assessment of the calculational accuracy of the discrete-ordinates codes, PALLAS-2DCY and DOT-III, has been performed for gamma-ray transport through air from a 60Co point isotropic source. The first collision source technique was used in the calculations. The results were compared with the measured exposure dose rates near the ground surface. Also, the ratio of the dose rates by gamma rays incident on and reflected from the ground was compared between the calculations. In addition, the calculated angular fluxes were examined. It is shown that the use of a truncated Legendre polynomial expansion implemented on DOT-III is not sufficient for calculations of gamma-ray scattering in air, while the direct application of the Klein-Nishina formula on PALLAS-2DCY is adequate to the calculations. Both two-dimensional transport codes, however, are useful for calculating the gamma-ray transport through air with a practical accuracy. PALLAS-2DCY requires one-fifth the central processor unit time as DOT-III.