ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Bernard Cohen
Nuclear Technology | Volume 47 | Number 1 | January 1980 | Pages 163-172
Technical Paper | Radioactive Waste | doi.org/10.13182/NT80-A32419
Articles are hosted by Taylor and Francis Online.
What is needed for high-level radioactive waste is not necessarily a program for final disposal, but rather an early clear demonstration that an acceptable method is available. This would be especially easy for ocean dumping, since the environment in the water just above the ocean floor is much more uniform, stable, predictable, and more easily reproduced in a laboratory than other environments being considered for waste storage. Other probable advantages of ocean dumping are improved capability for monitoring and retrievability and reduced cost and transport problems. It is assumed that the waste is incorporated into glass and dumped in oceans distributed throughout the world. Calculations of environmental impacts are given for various assumptions about leach rates and failures and for a 30 000-yr delay in onset of leaching achieved by surrounding the waste with a protective coating. With normal leaching, there would be 0.17 eventual human fatalities per GW(electric)-yr, and for the worst case of immediate complete dissolution, this is increased by only 30%. This is 150 times less than the fatalities due to wastes from coal-fired plants. Calculations of effects on ocean ecology are based on 105 GW(electric)-yr (100 yr with all the world’s power nuclear). Under essentially all reasonably credible conditions, the radiation dose to marine life is never as high as 1% of their exposure from natural radiation (0.1%) for microbiota). Evidence is presented that this would do essentially no harm to ocean ecology.