ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. R. Bierman, B. M. Durst, E. D. Clayton
Nuclear Technology | Volume 47 | Number 1 | January 1980 | Pages 51-58
Technical Paper | Reactor | doi.org/10.13182/NT80-A32411
Articles are hosted by Taylor and Francis Online.
A series of criticality experiments with 2.35 and 4.31 wt% 235U enriched UO2 rods in water has provided well-defined benchmark-type data showing that both depleted uranium and lead reflecting walls, submerged in the water reflector, are better neutron reflectors than water alone. For each fuel enrichment, the critical separation between three subcritical, near optimally moderated fuel clusters was observed to increase as either 77-mm-thick depleted uranium or 102-mm-thick lead reflecting walls were moved toward the fuel The maximum reactivity effect was observed for the depleted uranium with ∼20 mm of water between the reflecting walls and the fuel region, whereas for the lead, a maximum effect was obtained with essentially no water between the reflecting walls and the fuel region. This maximum reactivity effect was observed to occur at the same spatial separation between the fuel and reflecting walls for both fuel enrichments. However, the measurements indicated that the magnitude of this phenomenon is dependent on the 235U enrichment of the fuel The lead reflecting walls increased the critical separation between fuel clusters a maximum of 67% for the 2.35 wt% 235U enriched fuel and at least 152% for the 4.31 wt% enriched fuel Similar results were observed with the depleted uranium reflecting walls.