ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Edward T. Maas, Jr., John M. Longo
Nuclear Technology | Volume 47 | Number 3 | March 1980 | Pages 451-456
Technical Paper | Chemical Processing | doi.org/10.13182/NT80-A32399
Articles are hosted by Taylor and Francis Online.
While many materials have been suggested and employed as trapping agents for gaseous oxides of fission product ruthenium volatilized during nuclear fuels reprocessing, none that is known to form thermodynamically stable compounds with ruthenium has been utilized. We have employed alkaline earth metal compounds for this purpose because of their ability to form stable mixed metal oxide phases with ruthenium. Results of experiments in which RuO4 was volatilized from either a solid source (RuO2·xH2O) or from solution {[Ru(NO)(NO3)3] in HNO3} and passed through beds of alkaline earth metal carbonates and calcium oxide held at 600 to 750°C have demonstrated that compounds of formulation MRuO3 (M = calcium, strontium, barium) are formed. Under oxidizing conditions, these materials exist as stable ceramic phases, whereas under reducing conditions, they are transformed into intimate mixtures of the alkaline earth metal oxide and nonvolatile ruthenium metal.