ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Edward T. Maas, Jr., John M. Longo
Nuclear Technology | Volume 47 | Number 3 | March 1980 | Pages 451-456
Technical Paper | Chemical Processing | doi.org/10.13182/NT80-A32399
Articles are hosted by Taylor and Francis Online.
While many materials have been suggested and employed as trapping agents for gaseous oxides of fission product ruthenium volatilized during nuclear fuels reprocessing, none that is known to form thermodynamically stable compounds with ruthenium has been utilized. We have employed alkaline earth metal compounds for this purpose because of their ability to form stable mixed metal oxide phases with ruthenium. Results of experiments in which RuO4 was volatilized from either a solid source (RuO2·xH2O) or from solution {[Ru(NO)(NO3)3] in HNO3} and passed through beds of alkaline earth metal carbonates and calcium oxide held at 600 to 750°C have demonstrated that compounds of formulation MRuO3 (M = calcium, strontium, barium) are formed. Under oxidizing conditions, these materials exist as stable ceramic phases, whereas under reducing conditions, they are transformed into intimate mixtures of the alkaline earth metal oxide and nonvolatile ruthenium metal.