ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Jim P. Wei
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 44-52
Technical Paper | Reactor | doi.org/10.13182/NT79-A32378
Articles are hosted by Taylor and Francis Online.
A simplified interassembly heat transfer model has been developed to satisfy liquid-metal fast breeder reactor core restraint system analysis needs that explicitly treats steady-state intra-assembly and interassembly heat transfer in core assemblies. The intra-assembly heat transfer inside reactor assemblies is modeled based on application of the subchannel concept together with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The model utilizes a tri-grid system to treat interassembly heat transfer between assemblies. Because of this special nodal scheme, a set of finite difference equations, derived from the energy equation for all the subchannels, duct wall, and gap flow, is actually a rather special system of simultaneous linear algebraic equations which have a tri-diagonal matrix form. Due to this special form, an efficient method of solution for computers is used without matrix elimination and inversion. Although this model was developed for core restraint applications, it is also well suited for the determination of core-wide coolant temperature distributions.