ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Jim P. Wei
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 44-52
Technical Paper | Reactor | doi.org/10.13182/NT79-A32378
Articles are hosted by Taylor and Francis Online.
A simplified interassembly heat transfer model has been developed to satisfy liquid-metal fast breeder reactor core restraint system analysis needs that explicitly treats steady-state intra-assembly and interassembly heat transfer in core assemblies. The intra-assembly heat transfer inside reactor assemblies is modeled based on application of the subchannel concept together with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The model utilizes a tri-grid system to treat interassembly heat transfer between assemblies. Because of this special nodal scheme, a set of finite difference equations, derived from the energy equation for all the subchannels, duct wall, and gap flow, is actually a rather special system of simultaneous linear algebraic equations which have a tri-diagonal matrix form. Due to this special form, an efficient method of solution for computers is used without matrix elimination and inversion. Although this model was developed for core restraint applications, it is also well suited for the determination of core-wide coolant temperature distributions.