ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Jim P. Wei
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 44-52
Technical Paper | Reactor | doi.org/10.13182/NT79-A32378
Articles are hosted by Taylor and Francis Online.
A simplified interassembly heat transfer model has been developed to satisfy liquid-metal fast breeder reactor core restraint system analysis needs that explicitly treats steady-state intra-assembly and interassembly heat transfer in core assemblies. The intra-assembly heat transfer inside reactor assemblies is modeled based on application of the subchannel concept together with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The model utilizes a tri-grid system to treat interassembly heat transfer between assemblies. Because of this special nodal scheme, a set of finite difference equations, derived from the energy equation for all the subchannels, duct wall, and gap flow, is actually a rather special system of simultaneous linear algebraic equations which have a tri-diagonal matrix form. Due to this special form, an efficient method of solution for computers is used without matrix elimination and inversion. Although this model was developed for core restraint applications, it is also well suited for the determination of core-wide coolant temperature distributions.