ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
J. R. Engel, W. A. Rhoades, W. R. Grimes, J. F. Dearing
Nuclear Technology | Volume 46 | Number 1 | November 1979 | Pages 30-43
Technical Paper | Reactor | doi.org/10.13182/NT79-A32377
Articles are hosted by Taylor and Francis Online.
Molten-salt reactors (MSRs), because of the fluid nature of the fuel, appear to provide an attractive approach to efficient fuel utilization in the thorium-233U cycle as well as a means for limiting the availability of plutonium and the general proliferation risks associated with nuclear power generation. High-enrichment 233U systems could, in principle, be operated with positive breeding gains to effectively eliminate plutonium as a nuclear fuel However, such systems would be proliferation sensitive. Concept modifications (short of denaturing the uranium fuel) can be conceived to enhance the proliferation resistance of high-enrichment MSRs, but it is doubtful that sufficient enhancement could be achieved to make the systems suitable for deployment other than at “secure” sites. Denaturing the uranium in an MSR introduces some plutonium into the fuel cycle and generally degrades its breeding performance. Nevertheless, a denatured MSR with full-scale on-site fuel reprocessing appears to be capable of break-even breeding. In addition, the plutonium (most of which is consumed in situ) would be of poor quality and would never be isolated from all other undesirable nuclides. Thus, such systems would provide for efficient utilization of uranium resources in a proliferation-resistant environment while limiting the amount of plutonium (and transplutonium actinides) that would have to be handled as waste. The development of commercial MSRs by early in the 21st century appears to be technologically feasible.