ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Yuh-Ming Ferng, Yin-Pang Ma, Jer-Cherng Kang
Nuclear Technology | Volume 136 | Number 2 | November 2001 | Pages 186-196
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3237
Articles are hosted by Taylor and Francis Online.
Multidimensional thermal-hydraulic characteristics in the secondary side of a steam generator (SG) are simulated by way of flow-boiling models. These models essentially belong to the so-called first-principle models that are derived from the conservation laws. The calculated results can provide the whole picture of thermal-hydraulic phenomena and the localized distributions of velocity, pressure, enthalpy, and void fraction, etc. in the secondary side of the SG. In addition, with the help of these localized flow characteristics, the forcing sources can be estimated for predicting flow-induced vibration (FIV) damage suspected in the tube bundles around the U-bend region. These calculated results can provide important information to help the FIV prediction for SG U-tubes and to find where the most possible FIV damage is located.