ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. Segev, R. E. Henry, S. G. Bankoff
Nuclear Technology | Volume 46 | Number 3 | December 1979 | Pages 482-492
Technical Paper | Nuclear Power Reactor Safety / Reactor | doi.org/10.13182/NT79-A32356
Articles are hosted by Taylor and Francis Online.
Shock tube experiments with a variety of liquids have been conducted in which large pressures were obtained for systems of water-Wood’s metal, butanol-Wood’s metal, and water-molten salt. With the water-Wood’s metal system, three separate regions were observed. When the hot liquid temperature was below 210°C (which can be identified as the spontaneous nucleation temperature), no thermal interaction occurred, and the cold liquid column only bounced if vapor were present initially (region A). When the hot liquid temperature was greater than the spontaneous nucleation temperature but the contact interface temperature was less than this value (region B), the low rate of vaporization resulted in bouncing of the liquid column, which in turn produced high pressures on the order of the theoretical “water hammer” pressure. Those hydrodynamic pressures are larger than the vapor pressure corresponding to the bulk temperature of the hot liquid and larger than the maximum pressure that may be generated from single-phase pressurization. The third region, observed when the hot liquid temperature was above the spontaneous nucleation temperature upon contact (region C), resulted in fast production of vapor and impulses larger than the theoretical impulse for stopping the liquid column. The mechanism for producing the high pressures in region C is a combination of hydrodynamic impact and thermal interaction. Since pressures produced in region C are also on the order of impact pressures, the only indication for thermal interaction is a considerable increase in the resulting impulse of pressure pulses with short rise time (<1.0 ms). When the initial pressure in the system was increased (by means of a thicker diaphragm), the bouncing behavior was suppressed. This was evident from the reduced number of bounces (if any at all), the low relative pressures and impulses, the temperature history, and the shape of pressure pulses. Experiments conducted with Freons and oils (mineral and silicon), which did not result in any explosive type of interaction, also fall in a high-pressure category and are in agreement with pouring experiments. As was shown in these experiments, the hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. However, this was not the case in the Wright et al. experiments, in which no bouncing was observed and the pressures generated on the first impact were much higher than the theoretical impact pressure. From mixing and heat transfer considerations, it is shown that a limited amount of hot liquid can transfer its energy to the cold liquid during the intermixing stage and produce the observed pressures.