ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Robert P. Wadkins, Richard G. Ambrosek, Michael W. Young
Nuclear Technology | Volume 46 | Number 3 | December 1979 | Pages 465-472
Technical Paper | Nuclear Power Reactor Safety / Reactor | doi.org/10.13182/NT79-A32354
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) tests were performed at low pressure in a close-packed rod bundle. The electrically heated test bundle had geometrical configurations the same as those of the Power Burst Facility nuclear core. Existing low-pressure CHF correlations, namely, those of Bernath and Lund, did not correlate well with the test data. The Bernath correlation overpredicts CHF in some cases by a factor of 5 when compared with measured values. Lund’s correlation overpredicts CHF at measured CHF values above 1.5 MW/m2, and underpredicts CHF at measured CHF values below 1.5 MW/m2. These CHF tests provided the first close-packed rod bundle data with a sufficient data base to develop a correlation. The study examined CHF with absolute coolant system pressures of 117 to 255 kPa, mass velocities of 1992 to 4830 kg/s· m2, and subcooling of up to 53°C, with a rod spacing of 1.02 mm. The effect of rod bowing was examined with the rod spacing reduced in varying degrees to a minimum of 0.0508 mm. Motion pictures of the rod bundle during CHF with nominal spacing and bowed rods show that CHF occurs in the rod gap and does not propagate azimuthally on the rod surface. A CHF correlation developed from the test data correlates the data with a standard deviation of 8.79%.