ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Robert P. Wadkins, Richard G. Ambrosek, Michael W. Young
Nuclear Technology | Volume 46 | Number 3 | December 1979 | Pages 465-472
Technical Paper | Nuclear Power Reactor Safety / Reactor | doi.org/10.13182/NT79-A32354
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) tests were performed at low pressure in a close-packed rod bundle. The electrically heated test bundle had geometrical configurations the same as those of the Power Burst Facility nuclear core. Existing low-pressure CHF correlations, namely, those of Bernath and Lund, did not correlate well with the test data. The Bernath correlation overpredicts CHF in some cases by a factor of 5 when compared with measured values. Lund’s correlation overpredicts CHF at measured CHF values above 1.5 MW/m2, and underpredicts CHF at measured CHF values below 1.5 MW/m2. These CHF tests provided the first close-packed rod bundle data with a sufficient data base to develop a correlation. The study examined CHF with absolute coolant system pressures of 117 to 255 kPa, mass velocities of 1992 to 4830 kg/s· m2, and subcooling of up to 53°C, with a rod spacing of 1.02 mm. The effect of rod bowing was examined with the rod spacing reduced in varying degrees to a minimum of 0.0508 mm. Motion pictures of the rod bundle during CHF with nominal spacing and bowed rods show that CHF occurs in the rod gap and does not propagate azimuthally on the rod surface. A CHF correlation developed from the test data correlates the data with a standard deviation of 8.79%.