ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Yonezo Tsujikura
Nuclear Technology | Volume 136 | Number 2 | November 2001 | Pages 141-157
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3234
Articles are hosted by Taylor and Francis Online.
When designing the safety system for the next generation of pressurized water reactors (PWRs), it is essential to rationalize the safety system by taking factors such as safety, reliability, and economy into account. To do so, a comprehensive methodology for designing an accident mitigation system was developed on the basis of the following studies. Threats to the reactor core, which are inherent to PWRs, were systematically analyzed. Following this, efforts to specify the requirements needed to mitigate the threats were made with the specification of components composing the mitigation systems. On the basis of a loss-of-coolant accident as an example of the severest accident, thermohydro analyses without any mitigation systems were made to determine the requirements needed to keep the core safe. Information related to the system's design parameters were successfully obtained. On the basis of these studies, candidates for mitigation systems that respond in accordance with the scales and phases in progress of accidents were systematically selected and discussed. In the future, the methodology presented herein may be extended to cover the structuring of overall plant safety systems.