ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Magdi M. H. Ragheb, Said I. Abdel-Khalik, Mahmoud Youssef, Charles W. Maynard
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 140-152
Technical Paper | Reactor | doi.org/10.13182/NT79-A32304
Articles are hosted by Taylor and Francis Online.
Three-dimensional neutronics models of the SOLASE-H fusion-fission reactor have been analyzed by Monte Carlo. In this design, light water reactor (LWR) fertile ThO2 fuel bundles are enriched in the fissile isotope 233U and then shipped for burning in the LWRs. A concept where the fertile fuel bundles constitute a lattice configuration with the moderator-multiplier material is investigated. Parametric lattice calculations as a function of the neutron moderator-multiplier to fuel volume ratio (vm/vf) in the lattice show that it is possible in such a concept to enhance the fissile nuclei production density in the fertile fuel, compared to cases where a lattice configuration is not used. This leads to shorter times to attain projected average fissile enrichments, using substantially smaller fuel inventories. Surrounding the whole reactor cavity with the neutron multiplier is found to enhance the fissile breeding in the radial blanket. Severe asymmetries in the spatial distribution of the fissile enrichment are detected and suggest the necessity of elaborate fuel irradiation and management programs in the case of a laser-driven system. The concept of a lattice configuration and the use of the whole solid angle surrounding the fusion source for neutron multiplication are recommended for adoption in future magnetic and inertial confinement fusion-fission hybrid reactor designs.