ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Magdi M. H. Ragheb, Said I. Abdel-Khalik, Mahmoud Youssef, Charles W. Maynard
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 140-152
Technical Paper | Reactor | doi.org/10.13182/NT79-A32304
Articles are hosted by Taylor and Francis Online.
Three-dimensional neutronics models of the SOLASE-H fusion-fission reactor have been analyzed by Monte Carlo. In this design, light water reactor (LWR) fertile ThO2 fuel bundles are enriched in the fissile isotope 233U and then shipped for burning in the LWRs. A concept where the fertile fuel bundles constitute a lattice configuration with the moderator-multiplier material is investigated. Parametric lattice calculations as a function of the neutron moderator-multiplier to fuel volume ratio (vm/vf) in the lattice show that it is possible in such a concept to enhance the fissile nuclei production density in the fertile fuel, compared to cases where a lattice configuration is not used. This leads to shorter times to attain projected average fissile enrichments, using substantially smaller fuel inventories. Surrounding the whole reactor cavity with the neutron multiplier is found to enhance the fissile breeding in the radial blanket. Severe asymmetries in the spatial distribution of the fissile enrichment are detected and suggest the necessity of elaborate fuel irradiation and management programs in the case of a laser-driven system. The concept of a lattice configuration and the use of the whole solid angle surrounding the fusion source for neutron multiplication are recommended for adoption in future magnetic and inertial confinement fusion-fission hybrid reactor designs.