ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
K. Tasaka, H. Adachi, M. Sobajima, K. Soda, M. Suzuki, M. Okazaki, M. Shiba
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 121-139
Technical Paper | Reactor | doi.org/10.13182/NT79-A32303
Articles are hosted by Taylor and Francis Online.
To evaluate upper head injection system (UHIS) performance during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR), ten UHIS tests were conducted at the ROSA-II test facility. The experimental results were different from the expected UHIS performance in the following points. First, flashing took place in the upper head and a mixture level was formed before UHIS actuation. Second, emptying of the upper head was observed immediately after UHIS shut off. Third, part of the water which flowed down from the upper head, penetrated into the core and contributed to core cooling at the top part of the core, however, most of the water flowed out through the broken loop hot leg. In the case of higher injection water temperature (∼120°C), the fluid behavior in the pressure vessel differed significantly from the results for the low injection water temperature (∼20°C), and the core cooling was remarkably improved. Therefore, high-temperature UHIS water is recommended for effective core cooling. The results described above are due to the following physical phenomena: