ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Chao, B. B. Miki, N. E. Todreas
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 113-120
Technical Paper | Reactor | doi.org/10.13182/NT79-A32302
Articles are hosted by Taylor and Francis Online.
The effects on heating and tritium breeding of using different coolants and structural arrangements have been investigated for tokamak fusion reactors. Coolants considered are lithium, helium, and flibe (a molten salt, LiF-BeF2 eutectic). Structural arrangements are modeled by using four 20-cm breeding zones between a 0.5-cm-thick first wall and a 10-cm graphite reflector. Different values for the volume percent of Type 316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material that satisfies various thermal-hydraulic requirements. For a 10% average volume percent stainless steel in the blanket filled with lithium, the difference in breeding ratio between having a uniform structural distribution and a slant distribution is 4%. The difference in breeding ratio where the value of albedo at the outer edge of the graphite zone is changed from 0.0 to 0.45 is 1%. Little difference in volumetric heat generation rates between using lithium and helium as coolants is observed. For a flibe-cooled blanket, the volumetric heat generation rate is higher near the first wall and lower near the reflector region than the lithium- and helium-cooled blankets. The effects on heat generation of different structural distributions and different albedos are insignificant. For values of volume percent of stainless steel in the breeding zone ranging from 5 to 15%, the breeding ratios range from 1.481 to 1.256 for lithium, 1.372 to 1.184 for helium, and 1.349 to 1.191 for flibe.