ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. Chao, B. B. Miki, N. E. Todreas
Nuclear Technology | Volume 45 | Number 2 | September 1979 | Pages 113-120
Technical Paper | Reactor | doi.org/10.13182/NT79-A32302
Articles are hosted by Taylor and Francis Online.
The effects on heating and tritium breeding of using different coolants and structural arrangements have been investigated for tokamak fusion reactors. Coolants considered are lithium, helium, and flibe (a molten salt, LiF-BeF2 eutectic). Structural arrangements are modeled by using four 20-cm breeding zones between a 0.5-cm-thick first wall and a 10-cm graphite reflector. Different values for the volume percent of Type 316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material that satisfies various thermal-hydraulic requirements. For a 10% average volume percent stainless steel in the blanket filled with lithium, the difference in breeding ratio between having a uniform structural distribution and a slant distribution is 4%. The difference in breeding ratio where the value of albedo at the outer edge of the graphite zone is changed from 0.0 to 0.45 is 1%. Little difference in volumetric heat generation rates between using lithium and helium as coolants is observed. For a flibe-cooled blanket, the volumetric heat generation rate is higher near the first wall and lower near the reflector region than the lithium- and helium-cooled blankets. The effects on heat generation of different structural distributions and different albedos are insignificant. For values of volume percent of stainless steel in the breeding zone ranging from 5 to 15%, the breeding ratios range from 1.481 to 1.256 for lithium, 1.372 to 1.184 for helium, and 1.349 to 1.191 for flibe.