ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. E. Selle, P. Angelini, R. H. Rainey, J. I. Federer, A. R. Olsen
Nuclear Technology | Volume 45 | Number 3 | October 1979 | Pages 269-286
Technical Paper | Fuel Cycle | doi.org/10.13182/NT79-A32296
Articles are hosted by Taylor and Francis Online.
The use of a gamma active radionuclide with nuclear fuel has been proposed as a way to inhibit unauthorized diversion of the fuel and thus provide proliferation deterrence. Proposed dose rate ranges have varied from small additions to increase detectability of diverted material up to large additions to provide lethal doses in a relatively short exposure time. Some of the practical aspects of incorporating spikants into nuclear fuel are examined in an attempt to identify any technically adverse consequences of their use. Selection of potential spikants was made by the application of some somewhat arbitrary radiation criteria to 64 candidate spikants followed by an analysis of the chemical and physical state of each potential spikant. As a result of this analysis, the list of candidates was narrowed to 60Co, 106Ru, and 144Ce. Following this, we investigated the practical aspects of the use of these three spikants in nuclear fuel. Among the subjects considered are dose rates available from fuel elements, fission product buildup, chemical behavior of spikants during reprocessing, and possible effects of spikants on refabrication and on the fuel properties. Neither 106Ru nor 144Ce is present in sufficient quantity to produce the maximum radiation dose rate level considered. Nonradioactive nuclides of ruthenium and cerium dilute the radioactive nuclides to 2 to 4% of the total element in the fission products 2 yr after removal from the reactor. Recycling ruthenium and cerium will result in dilution of the radionuclides even further by a buildup of stable isotopes of each of these elements. Approximately 50% of the fission product ruthenium and 3 to 5% of the cerium can be coprocessed with the fuel, while cobalt cannot be coprocessed at all. No single radionuclide was found to be preferred in all stages of reprocessing and refabrication. To provide deterrence in all stages of reprocessing and refabrication, a duplex spiking process appears necessary, in which two different spikants, 106Ru and 60Co, are used in different portions of reprocessing. The use of nominal amounts of ruthenium or cobalt as spikants is not expected to adversely affect fuel performance.