ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. T. Cheng, C. W. Maynard, W. F. Vogelsang, A. C. Klein
Nuclear Technology | Volume 45 | Number 1 | August 1979 | Pages 77-98
Technical Paper | Reactor | doi.org/10.13182/NT79-A32287
Articles are hosted by Taylor and Francis Online.
One of the characteristics of a compact tokamak fusion reactor such as NUWMAK is high power density (∼10 MW/m3) and thus high neutron wall loading (∼5 MW/m2). The most crucial design requirements for a tokamak fusion reactor blanket and shield are (a) adequate tritium breeding ratio (>1.10), (b) high blanket energy multiplication (≥1.2), (c) adequate magnet protection, and (d) low radioactivity. The magnet protection criterion for a compact reactor is particularly essential in the inner region of the torus close to the toroidal axis because of limited space availability for shielding. A very effective shielding material such as tungsten must be used for this purpose. The design requirements have been satisfied by the selection of blanket and shielding materials as well as their zone thicknesses and heights. The nucleonic design features of the NUWMAK are as follows. A tritium breeding ratio of 1.54 is obtained. Li62Pb38 eutectic is used as the breeding and thermal energy storage material. The total nuclear heating in the blanket and shield is ∼17.2 MeV per deuterium-tritium neutron. The performance of the superconducting magnet will be satisfactory for more than 2 yr of continuous operation through the use of a 35-cm-thick tungsten shield that extends 2.5 m above the midplane on the inboard part of the torus. The radioactivity is lowered by using a titanium alloy as the structural material and large amounts of lithium lead as the blanket material. One day after shutdown, the dose rate outside the outer shield drops below 2.6 mrem/h, and it is favorable to hands-on shift maintenance.