ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company (TEPCO) began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
M. G. Seitz, P. G. Rickert, S. Fried, A. M. Friedman, M. J. Steindler
Nuclear Technology | Volume 44 | Number 2 | July 1979 | Pages 284-296
Technical Paper | Radioactive Waste | doi.org/10.13182/NT79-A32262
Articles are hosted by Taylor and Francis Online.
Nuclear waste can be disposed of in geologic repositories. To aid in assessing the suitability of geologic disposal, we have examined the interactions of trace quantities of cesium, plutonium, neptunium, and americium in aqueous solutions with rocks from formations that may be suitable for waste repositories. The results indicate that many geologic formations are barriers to the movement of these elements in flowing water. However, reactions that retard element migration are varied and do not lend themselves to simplified descriptions. In experiments with plutonium and americium, kinetics of reactions were seen to differ for each trace element and rock studied. In rock infiltration experiments with radioactive cesium, plutonium, neptunium, and americium, often most of the activity moved slowly compared to the water stream, but small quantities of the trace elements moved downstream from the main peaks of activity because of the slow reaction rates seen in static experiments, or possibly because of multiple speciation, colloid formation, movement of particles with adsorbed nuclides, or other causes. These fast-moving components of the trace elements may present a radiological hazard from a breached repository, even though they contain only a small fraction of the activity leaving the repository; therefore, detailed characteristics of nuclide migration need to be considered in the design of a nuclear waste repository.