ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Rodney R. Gay
Nuclear Technology | Volume 44 | Number 2 | July 1979 | Pages 246-257
Technical Paper | Reactor Siting | doi.org/10.13182/NT79-A32259
Articles are hosted by Taylor and Francis Online.
A computer code called EFLOD has been developed for simulation of the heat transfer and hydrodynamics of a nuclear power reactor during the reflood phase of a loss-of-coolant accident. EFLOD models the downcomer, lower plenum, core, and upper plenum of a nuclear reactor vessel using seven control volumes assuming either homogeneous or unequal-velocity, unequal-temperature (UVUT) models of two-phase flow, depending on location within the vessel The moving control volume concept in which a single control volume models the quench region in the core and moves with the core liquid level was developed and implemented in EFLOD so that three control volumes suffice to model the core region. A simplified UVUT model that assumes saturated liquid above the quench front was developed to handle the nonhomogeneous flow situation above the quench region. An explicit finite difference routine is used to model conduction heat transfer in the fuel, gap, and cladding regions of the fuel rod. In simulation of a selected FLECHT-SET experimental run, EFLOD successfully predicted the midplane maximum temperature and turnaround time as well as the time-dependent advance of the core liquid level. However, the rate of advancement of the quench level and the ensuing liquid entrainment were overpredicted during the early part of the transient.