ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Longcheng Liu, Ivars Neretnieks
Nuclear Technology | Volume 135 | Number 3 | September 2001 | Pages 273-285
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-2
Articles are hosted by Taylor and Francis Online.
An earlier model for oxidative dissolution of spent fuel was developed by including the release behavior of actinides from the fuel surface and the barrier effect of Zircaloy claddings. The aim here is to explore the possibility and consequences of precipitation in the water film around the fuel pellets due to solubility and transport limitations of nuclides. The model has been applied in the performance assessment of a damaged canister under natural repository conditions, by coupling to a redox-front-based model for transport of nuclides. The simulation results identify that the time of penetration of the canister, the size of the damage, and the initial free volume of the fuel rods are important factors that dominate the dissolution behavior of the fuel matrix and thus the transport behavior of actinides in the near field of a repository.