ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. F. MacDonald, S. Nair
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 353-361
Technical Note | Fuel Cycle | doi.org/10.13182/NT79-A32193
Articles are hosted by Taylor and Francis Online.
The Central Electricity Generating Board reactor inventory code RICE has been used to calculate the buildup of activity and radioactive emissions for a range of alternative fuel cycles based on a conceptual high-temperature gas-cooled reactor design. The fuels included in this study were a conventional 235U-enriched oxide fuel, a mixed PuO2/UO2 fuel employing pressurized water reactor plutonium, and both low- and high-enrichment mixed 235UO2/ThO2 fuels. The results have been used to quantify the radiological protection implications of these fuel cycles in terms of fuel handling and reprocessing waste management. Some of the thorium fuels investigated have distinct advantages compared with those employing recycled plutonium in terms of both reduced neutron dose rates and long-term alpha decay heating. However, this is at the expense of enhanced gamma dose rates during the fabrication and handling of fresh 233U fuels. These gamma emissions build up with time and require rapid fabrication and return of fuel to the reactor following irradiated fuel reprocessing. The hazards associated with fuel reprocessing wastes are dominated by fission product isotopes over the first few centuries and are similar for U/Pu and thorium fuel cycles. The reduced hazards associated with the actinide component of thorium fuels are only advantageous in waste management schemes involving separate treatment of fission products and actinides.