ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. F. MacDonald, S. Nair
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 353-361
Technical Note | Fuel Cycle | doi.org/10.13182/NT79-A32193
Articles are hosted by Taylor and Francis Online.
The Central Electricity Generating Board reactor inventory code RICE has been used to calculate the buildup of activity and radioactive emissions for a range of alternative fuel cycles based on a conceptual high-temperature gas-cooled reactor design. The fuels included in this study were a conventional 235U-enriched oxide fuel, a mixed PuO2/UO2 fuel employing pressurized water reactor plutonium, and both low- and high-enrichment mixed 235UO2/ThO2 fuels. The results have been used to quantify the radiological protection implications of these fuel cycles in terms of fuel handling and reprocessing waste management. Some of the thorium fuels investigated have distinct advantages compared with those employing recycled plutonium in terms of both reduced neutron dose rates and long-term alpha decay heating. However, this is at the expense of enhanced gamma dose rates during the fabrication and handling of fresh 233U fuels. These gamma emissions build up with time and require rapid fabrication and return of fuel to the reactor following irradiated fuel reprocessing. The hazards associated with fuel reprocessing wastes are dominated by fission product isotopes over the first few centuries and are similar for U/Pu and thorium fuel cycles. The reduced hazards associated with the actinide component of thorium fuels are only advantageous in waste management schemes involving separate treatment of fission products and actinides.