ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Charles R. Marotta
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 350-352
Technical Note | Reactor | doi.org/10.13182/NT79-A32192
Articles are hosted by Taylor and Francis Online.
A simple and accurate calculation method is presented for the variation of bubble worth in a molten core. The method depends on previous analysis of the author on reactivity increase due to compaction of unmoderated fissile systems. The average density of the fuel material after it has expanded into the bubble region is the controlling parameter of the proposed method. Comparison with detailed bubble worth calculations due to Nicholson and Goldsmith shows excellent agreement. Given a “quality” base worth case, the bubble worth variation for the perturbed system (of fuel, either moving into or out of the bubble volume) can be accurately calculated in terms of the base worth value. The proposed method can be used to evaluate the physical reasonableness of complex calculations using transport theory or Monte Carlo for estimates of bubble worth.