ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
David G. Martin
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 304-311
Technical Paper | Fuel | doi.org/10.13182/NT79-A32184
Articles are hosted by Taylor and Francis Online.
The fact that not all coated fuel particles in a batch fail after the same irradiation history is due to manufacturing variations in values of individual particle parameters. Two methods of calculating the failure fraction as a function of burnup in terms of these statistical variations are discussed: (a) a random sampling of particles combined with a simple stress model, and (b) the convolution of the individual variations combined with an advanced stress model. These methods were applied to particles manufactured by two laboratories in support of the U.K. low-enriched fuel cycle high-temperature reactor design. Experimental values of variations in the following parameters were included: kernel diameter and porosity, thickness of buffer, seal, silicon carbide and inner and outer pyrocarbon layers (all assumed to be normally distributed), and the silicon carbide fracture stress (assumed to obey a Weibull distribution). It was concluded that the convolution approach was the more satisfactory method. The results enable one to identify which of the various parameters considered are the most worthwhile for manufacturers to put development effort into so as to reduce their variability. For the particles considered here, these are primarily silicon carbide fracture stress, followed by kernel porosity.