ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. K. Mathews, H. C. Jain, V. D. Kavimandan, S. K. Aggarwal
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 297-303
Technical Paper | Chemical Processing | doi.org/10.13182/NT79-A32183
Articles are hosted by Taylor and Francis Online.
The input end of a reprocessing plant is the first point in the fuel cycle where the plutonium produced in reactors can be accurately measured. The current practice for measuring the plutonium entering a reprocessing plant is to determine the total amount of this element in each batch in an accountability tank by the volume concentration method. This involves the measurement of the concentration of plutonium in the sample and the volume, density, and temperature of the solution in the tank; each of these measurements contributes to the total error in the input accountability measurement. Other approaches being studied are the Pu/U ratio method and the isotope correlation technique. These depend heavily on data from the fabrication plant and the reactor and require a good estimate of the losses through hulls. Through developing tracer techniques for the input accountability of plutonium in reprocessing plants, two tracers have been identified and tested: magnesium and lead. The corresponding techniques have been named MAGTRAP (Magnesium Tracer technique for the Accountability of Plutonium) and LEADTRAP (Lead Tracer Technique for the Accountability of Plutonium). The method involves the addition of a known amount of tracer to the input accountability tank and the subsequent measurement of the plutonium-to-tracer ratio in a sample of the tank solution. By knowing the amount of tracer element added, the total amount of plutonium in the tank can be obtained. The validity of this technique has been established by a series of experiments in the input accountability tank of a reprocessing plant. Accuracies of better than 1% are attainable by this method.