ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
S. Gross, D. Vollath
Nuclear Technology | Volume 42 | Number 3 | March 1979 | Pages 264-271
Technical Paper | Reactor | doi.org/10.13182/NT79-A32180
Articles are hosted by Taylor and Francis Online.
Out-of-pile experiments were performed on fuel configurations, having a geometry similar to that of reactor fuel elements to study the thermal interaction between molten UO2 and subcooled sodium. The fragmented fuel generated was investigated by means of a scanning electron microscope. The composition of the fuel particles and the test results, especially the pressure pulses measured, lead to the following conclusions concerning the processes taking place. The liquid fuel escaping from the fuel rods has already been coarsely dispersed by the escaping filling gas. Finer fragmentation is mainly caused by two factors. The first are mechanical stresses occurring while the pieces solidify; the shell-shaped particles show that liquid fuel had been expelled from the interior of the pieces during the process of solidification. Second, coarser pieces of fuel were fragmented by small amounts of penetrating liquid sodium that was superheated and subsequently evaporated. The measured pressure pulses are due to rapid evaporation of this entrapped sodium.