ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Alain Lebrun, Gilles Bignan
Nuclear Technology | Volume 135 | Number 3 | September 2001 | Pages 216-229
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3217
Articles are hosted by Taylor and Francis Online.
Criticality safety analysis devoted to spent-fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent-fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as burnup credit. To be used, burnup credit involves obtaining evidence of the reactivity loss with a burnup measurement.Many nondestructive assays (NDA) based on neutron as well as on gamma-ray emissions are devoted to spent-fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously, and the link to burnup is a power link. As a result, burnup determination with passive neutron measurement is extremely accurate.Some gamma emitters also have interesting properties in order to characterize spent fuels, but the convenience of the gamma spectrometric methods is very dependent on the characteristics of the spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels.Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail:1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several nuclear power plants in western Europe, gives the average burnup within a 5% uncertainty and also the extremity burnup.2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (active neutron interrogation, passive neutron counting, and gamma spectrometry).