ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alain Lebrun, Gilles Bignan
Nuclear Technology | Volume 135 | Number 3 | September 2001 | Pages 216-229
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3217
Articles are hosted by Taylor and Francis Online.
Criticality safety analysis devoted to spent-fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent-fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as burnup credit. To be used, burnup credit involves obtaining evidence of the reactivity loss with a burnup measurement.Many nondestructive assays (NDA) based on neutron as well as on gamma-ray emissions are devoted to spent-fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously, and the link to burnup is a power link. As a result, burnup determination with passive neutron measurement is extremely accurate.Some gamma emitters also have interesting properties in order to characterize spent fuels, but the convenience of the gamma spectrometric methods is very dependent on the characteristics of the spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels.Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail:1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several nuclear power plants in western Europe, gives the average burnup within a 5% uncertainty and also the extremity burnup.2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (active neutron interrogation, passive neutron counting, and gamma spectrometry).