ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Edward J. Bouwer, John W. McKlveen, W. J. McDowell
Nuclear Technology | Volume 42 | Number 1 | January 1979 | Pages 102-111
Technical Paper | Analysis | doi.org/10.13182/NT79-A32166
Articles are hosted by Taylor and Francis Online.
A method utilizing solvent extraction coupled with liquid scintillation spectrometry has been developed for the assay of uranium and thorium in fertilizers and phosphate-containing minerals and chemicals. Trioctylphosphine oxide in toluene is used to extract uranium and thorium from a perchloric and nitric acid solution, with phosphate interference being suppressed by the addition of aluminum ion. The uranium and thorium are stripped from this solution, and uranium is separated from the thorium by selective reextraction of uranium into a scintillator with Adogen 364 (tertiary amine) sulfate. The thorium remaining in the aqueous is reextracted into another scintillator with (primary) 1-nonyldecylamine sulfate. Both nuclides are counted separately in a high-resolution liquid scintillation spectrometer. The sensitivity of the counting method is enhanced by the use of pulse-shape rejection of the beta-gamma background. Results indicate a detection threshold of 0.0038 pCi of uranium (1.1 part/108) with a 1000-min counting time. Reproducibility of ±2.5% was found at the 50-ppm level. For thorium detection, thresholds are 4 part/1013 for the same counting time with ±3.0% average recovery of 230Th and 7 part/108 of 232Th.