ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
E. K. Opperman, J. L. Straalsund, G. L. Wire, R. H. Howell
Nuclear Technology | Volume 42 | Number 1 | January 1979 | Pages 71-81
Technical Paper | Material | doi.org/10.13182/NT79-A32163
Articles are hosted by Taylor and Francis Online.
An apparatus was developed that utilizes light ions to simulate the effect of a fusion reactor first wall environment on the creep properties of metals and alloys. The creep apparatus includes a wire specimen stressed in the torsional mode. Rotation or strain is measured by an optically coupled photocell tracking system. Temperature control of the specimen is obtained by varying the temperature of flowing helium passing perpendicularly across the specimen. The initial study involved bombarding a 20% cold-worked AISI Type 316 stainless-steel specimen at 400°C with 14.8-MeV protons at a beam intensity of ∼10 µA/cm2 or a displacement rate of ∼3.4 × 10−7 dpa/s. The accelerator was operated intermittently to accumulate 130 h of beam time and a total dose of ∼0.2 dpa. Strain rates on the order of 5 × 10−4% shear strain per hour were observed during irradiation, whereas negligible strain rates were observed when the accelerator was turned off. On a dpa basis, proton-induced irradiation creep rates were approximately one order of magnitude higher than those observed in fast reactor neutron irradiations of the same materials under similar conditions.