ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. K. Opperman, J. L. Straalsund, G. L. Wire, R. H. Howell
Nuclear Technology | Volume 42 | Number 1 | January 1979 | Pages 71-81
Technical Paper | Material | doi.org/10.13182/NT79-A32163
Articles are hosted by Taylor and Francis Online.
An apparatus was developed that utilizes light ions to simulate the effect of a fusion reactor first wall environment on the creep properties of metals and alloys. The creep apparatus includes a wire specimen stressed in the torsional mode. Rotation or strain is measured by an optically coupled photocell tracking system. Temperature control of the specimen is obtained by varying the temperature of flowing helium passing perpendicularly across the specimen. The initial study involved bombarding a 20% cold-worked AISI Type 316 stainless-steel specimen at 400°C with 14.8-MeV protons at a beam intensity of ∼10 µA/cm2 or a displacement rate of ∼3.4 × 10−7 dpa/s. The accelerator was operated intermittently to accumulate 130 h of beam time and a total dose of ∼0.2 dpa. Strain rates on the order of 5 × 10−4% shear strain per hour were observed during irradiation, whereas negligible strain rates were observed when the accelerator was turned off. On a dpa basis, proton-induced irradiation creep rates were approximately one order of magnitude higher than those observed in fast reactor neutron irradiations of the same materials under similar conditions.