ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
J. Chao, B. B. Mikic, N. E. Todreas
Nuclear Technology | Volume 42 | Number 1 | January 1979 | Pages 22-33
Technical Paper | Reactor | doi.org/10.13182/NT79-A32159
Articles are hosted by Taylor and Francis Online.
Two design models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters for a lithium-cooled tokamak blanket. The methodology can also be used to identify the limiting constraints for a particular design. For typical tokamaks, header diameter is ∼12 cm; coolant inlet velocity is found to be <0.1 m/s to maintain a reasonable hoop stress in the header. For the constant ’ model, where tubes are distributed to match the volumetric heat generation, the limiting constraints are found to be the total number of tubes and the maximum size of the headers that can fit radially in the blanket. The maximum first wall neutron loading is 7 MW/m2. For the constant Tmax model, where cooling channels are placed so that the peak temperatures between the channels are equal, the limiting constraint is found to be the thermal stress in the channel wall. The first wall neutron loading is found to be 2.1 MW/m2.