ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
J. Chao, B. B. Mikic, N. E. Todreas
Nuclear Technology | Volume 42 | Number 1 | January 1979 | Pages 22-33
Technical Paper | Reactor | doi.org/10.13182/NT79-A32159
Articles are hosted by Taylor and Francis Online.
Two design models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters for a lithium-cooled tokamak blanket. The methodology can also be used to identify the limiting constraints for a particular design. For typical tokamaks, header diameter is ∼12 cm; coolant inlet velocity is found to be <0.1 m/s to maintain a reasonable hoop stress in the header. For the constant ’ model, where tubes are distributed to match the volumetric heat generation, the limiting constraints are found to be the total number of tubes and the maximum size of the headers that can fit radially in the blanket. The maximum first wall neutron loading is 7 MW/m2. For the constant Tmax model, where cooling channels are placed so that the peak temperatures between the channels are equal, the limiting constraint is found to be the thermal stress in the channel wall. The first wall neutron loading is found to be 2.1 MW/m2.