ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Won Sik Yang, Hussein S. Khalil
Nuclear Technology | Volume 135 | Number 2 | August 2001 | Pages 162-182
Technical Paper | Accelerators | doi.org/10.13182/NT135-162
Articles are hosted by Taylor and Francis Online.
The results of blanket design studies for a lead-bismuth eutectic (LBE)-cooled accelerator transmutation of waste system are presented. These studies focused primarily on achieving two important and somewhat contradictory performance objectives: First, maximizing discharge burnup, so as to minimize the number of successive recycle stages and associated recycle losses, and second, minimizing burnup reactivity loss over an operating cycle, to minimize reduction of source multiplication with burnup. The blanket is assumed to be fueled with a nonuranium metallic dispersion fuel; pyrochemical techniques are used for recycle of residual transuranic (TRU) actinides in this fuel after irradiation. The key system objective of high-discharge burnup is shown to be achievable in a configuration with comparatively high power density and relatively low burnup reactivity loss. System design and operating characteristics that satisfy these goals while meeting key thermal-hydraulic and materials-related design constraints have been preliminarily developed. Results of the performance evaluations indicate that an average discharge burnup of ~27% is achieved with a ~3.5-yr fuel residence time. Reactivity loss over the half-year cycle is 5.3%k. The peak fast fluence value at discharge, the TRU fraction in the charged fuel, and the peak coolant velocity are well within the assumed design limits. Owing to its use of nonuranium fuel, this proposed LBE-cooled system can consume light water reactor-discharge TRUs at the maximum rate achievable per unit of fission energy produced (~1.0 g/MWd).