ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Mark W. Crump, John C. Lee
Nuclear Technology | Volume 41 | Number 1 | November 1978 | Pages 87-96
Technical Paper | Instrument | doi.org/10.13182/NT78-A32135
Articles are hosted by Taylor and Francis Online.
A mathematical model for ex-core detector response in pressurized water reactor (PWR) configurations is presented, based on the use of a spatial weighting function that is independent of core power distribution. The spatial weighting function is derived equivalently using a point kernel model and from numerical solutions of the adjoint neutron transport equation. These methods are verified through the use of experimental thermal flux data for deep penetration in water and metal media. An adjoint ANISN weighting function calculation for a one-dimensional cylindrical PWR model also shows good agreement with an equivalent point kernel calculation. Weighting function calculations using the point kernel method for a detailed three-dimensional model based on the Indian Point Unit 2 Reactor indicate that 91% of ex-core detector response is due to the five fuel assemblies nearest the detector. We believe that the weighting functions obtained with the point kernel method represent reliable information that can be used in the analysis of ex-core detector response during reactor operations.