ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Jinsong Liu, Ivars Neretnieks
Nuclear Technology | Volume 135 | Number 2 | August 2001 | Pages 154-161
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-A3213
Articles are hosted by Taylor and Francis Online.
When released out of a canister, the radionuclides originally incorporated in the spent fuel can still deposit radiation energy (even more efficiently) into the pore water, cause water radiolysis, and produce oxidants in the buffering material. This phenomenon is termed secondary water radiolysis. The oxidants thus produced can possibly diffuse back to oxidize the spent fuel and to increase the oxidative dissolution rate of the fuel.The effect of the secondary water radiolysis has been identified and preliminarily addressed by a mass-balance model. To explore whether the effect is significant on spent-fuel dissolution, the upper-boundary limit of the effect has been set up by considering a scenario that is very unlikely to occur. Several extreme assumptions have been made: First, the canister fails completely 103 yr after deposition; second, the spent fuel is oxidized instantaneously; and third, the radionuclides considered are those that dominantly contribute to radiolysis between 103 to 105 yr. With these assumptions, the spent-fuel dissolution rate can be increased dramatically if 10% or more of the oxidants produced by the secondary water radiolysis diffuse back to oxidize the spent fuel. It thus indicates that the effect of the secondary water radiolysis could be significant with some extreme assumptions. With more realistic assumptions, the effect could possibly become minimal. The subject is worth further investigation.